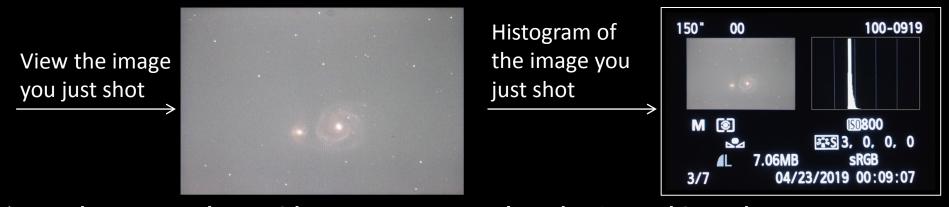
Fundamentals of Astrophotography

By Jim Mack

Digital Camera in Hand, Lets Start

- > Start with a sunset, You've probably done this
- Be careful so not to damage your eyes or the camera


OK, Break Out The Long Lens

- > Then go Hunting for the Elusive Green Flash
 - The Green Flash is an optical phenomena that transiently occurs around the moment of Sunset or Sunrise caused by Earth's atmosphere
 - Oh, there's an Old Wives Tail about seeing the Green Flash

- Your largest lens used about 50mm, using a longer lens means shorter exposure time
- ➤ Use a fast aperture of f2.8 f4
- > Set the White Balance to Daylight or Auto
- ➤ Set the Exposure length to 15 30 seconds
- > Shoot in RAW image format
 - A camera RAW image is an unprocessed photo.
 It contains the raw image data captured by the camera's sensor and saved in a proprietary file format specific to camera manufacture
 - By default, most digital cameras save as JPEG

- Set ISO at 1600
- > Use a 10 sec delay or a remote to avoid vibration
- Use Manual Focus, center on a bright star, using "Liveview" at high magnification get focus and tape focus ring with blue painters tape
- ➤ Local conditions (light pollution) will directly effect the camera settings and outcome of your image
- > Always do some test images, Over Exposing is easy

- ➤ Your first image: Now that you're all setup take your first image. Check it, how does it look? Under or over exposed?
- ➤ Check the histogram, adjust your ISO and aperture. The maximum level should be around 1/3 to center

➤ Take another Shot! Does it look Good? Take more Save them for later for stacking (advanced)

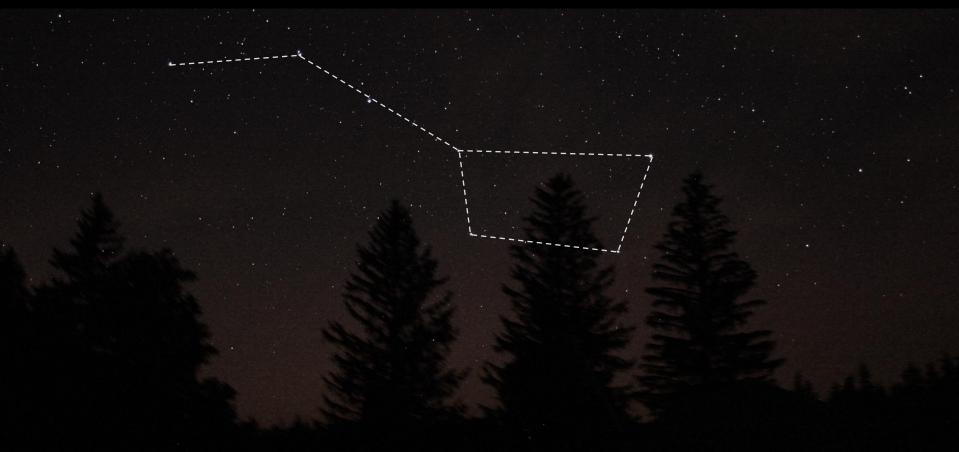
- Your image may have a brownish sky due to light pollution
- > To fix this:
 - You can create a Custom White Balance or....
 - You can image in the Camera RAW format and correct the white Balance during post processing using the Camera's software
 - Actually you can always image in both RAW & jpg
 - Just an FYI, a RAW image could be 5 to 10x larger than a JPG image of the same

Something Different and Easier

> The Belt of Venus, the rosy arch visible in the opposite sky above the horizon after sunset or before sunrise hovering above Earth's shadow on the atmosphere

All You Need is a DSLR & Tripod

> Night Scape, Rocket Launch and Star Trails


All You Need is a DSLR & Tripod

Nightscape, Constellations, Asterisms

Ursa Major and The Big Dipper

Look, That Looks Like Asterisms

> Asterisms, a Group of Stars that form a recognizable pattern or shape

Night Scape with the Moon and Venus

Our Moon is a Great Object to Image

> 1.4 Day old Moon and Mercury

Our Moon is a Great Object to Image

▶ 28 Day old Moon

Keep Looking Up

- ➤ Plan ahead, for information on What's Up this month check Astronomy Magazine, The Bishop or the "Local Group of Deep Sky Observers" (LGDSO)
- > Above all have some fun, who can write backwards

You Want More, Get a Camera Tracker!

- > A Small Equatorial Camera Tracking Mount
- Ranging in price from \$250 to \$500
- ➤ Payload capacity 6 to 10 pounds
- > Allowing you to take longer exposures up to 5+ min

Now That You have a Tracker

- Setup Tracker as instructed, Level, Balance & Polar Alignment are Very Important
- You Should Use an Intervalometer allowing more control when imaging
- Mirror Lock up will stop some vibrations
- > Your maximum exposure will Depend on the Sky
- Your largest lens about 200mm or what the Tracker can hold
- Make sure you have good focus, using "Liveview" zoom in to view the image
- > Use Blue Painter's Tape to hold the focus ring
- > Over Exposing is easy, Always do some test images

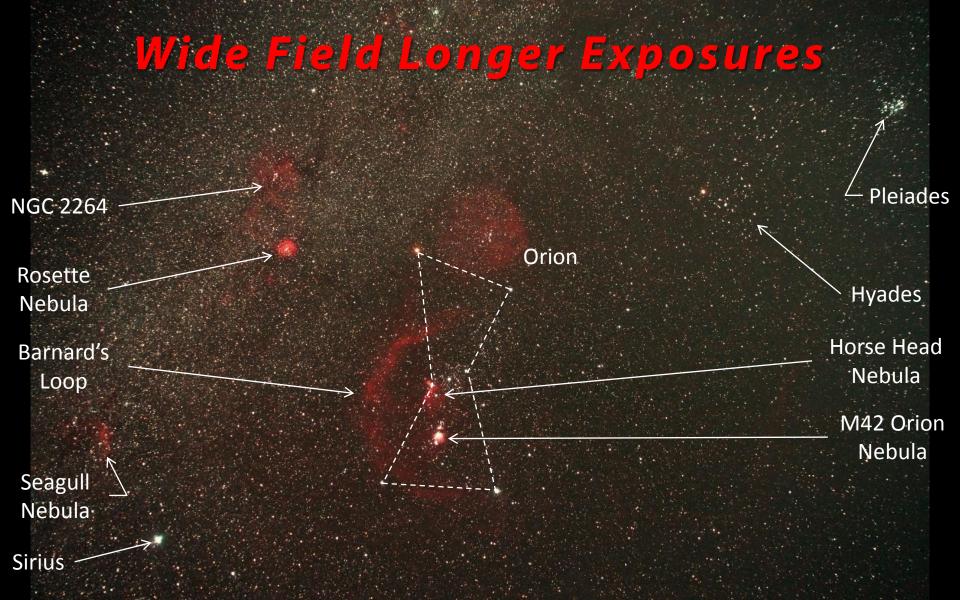
Polar Align Your Camera Tracker!

- With your Camera and Tracker mounted onto a Sturdy Tripod
- Setup and Polar Align, Polar Align, Polar Align!
- Good Polar Alignment means Better images & point stars

Smart Phone App Makes it Easier. (Ioptron)

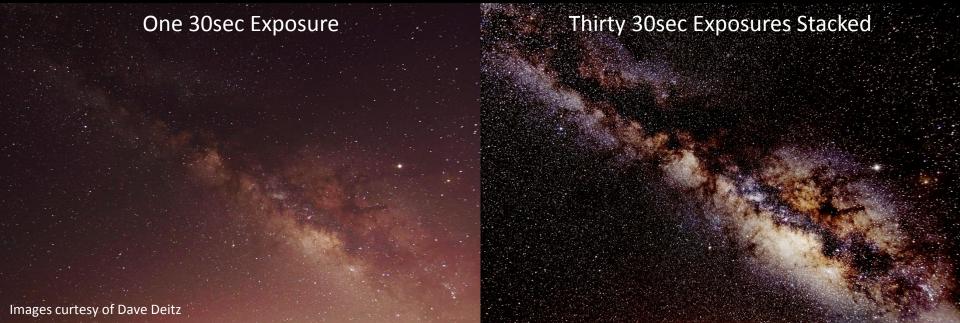
Night Scape Venus, Jupiter & Mars

Night Scape Mars, Pleiades & Hyades



Wide field Sky Scape Long Exposures

➤ Lake & Sky Scape, 2min Exposure



Wide Field Many Exposures

- Milky way, 30sec Exposure from Myakka 15mm,
- > Stacking, the process of taking many images of the same object and combining all the Data into One
- Something for the Advanced Program

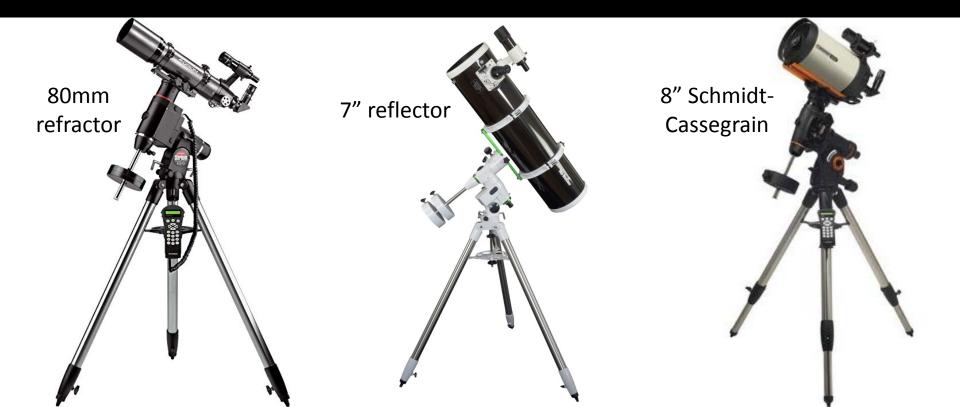
Night Scape Summer Milky Way

Imaging an Event Many Exposures

- > STS-133 & ISS 3/2011, six 30sec Exposures
- > Orion, Hyades and Pleiades
- > Tracking to keep background stars pinpoint

Long Event Many Short Exposures

- > Geminids Meteor Shower, Many 1min Exposures
- > Tracking & imaging for 2hrs
- Nine Meteors
- > Stars Castor & Pollux
- ➤ M44 Beehive Cluster
- Photoshop is Great


On The Fly Many Exposures Sky Scape

- ➤ Multiple 1 min exps, Aurora Borealis spans 100+ deg
- > You Never Know When Something Might Happen
- > Stitched six images, Photoshop is my friend!

Its Time to Get Real, Close Ups!

- > Now you Want a Telescope and Equatorial Mount
- > What can you do with that telescope?

Think of a Telescope as a Camera Lens

- > Think of your Telescope as a large Camera Lens
- 7.5" reflector 190mm f5.3 = 1007mm focal length
- 8" Schmidt 203mm f10 = 2030mm focal length Cassegrain
- ➤ All Types of Telescopes will work But
- You will need these, Intervalometer 2" adapter with T-ring and 2x Barlow with T-ring plus More

What You Can Image with a Telescope

- > Lunar, Planetary and Deepsky
- > All Types of Telescopes will work But......

What You Can Image with a Telescope

- > The 80mm Refractor, easy to use not heavy
 - Good for Moon, and Deepsky objects
 - Not great for Planetary Imaging but can be done
- > The 7" Reflector, not as easy to use by design
 - Can image Moon and Deepsky objects w/effort
 - Can image Planetary but not very well w/effort
- > The 8" Schmidt-Cassegrain, easy to use a bit heavier
 - Can image most objects in the sky
 - Best for Planetary Imaging
 - I Think The Refractor and SCT are best for imaging

Start With The Moon

The Moon is Big, Bright and looks Different Nightly!

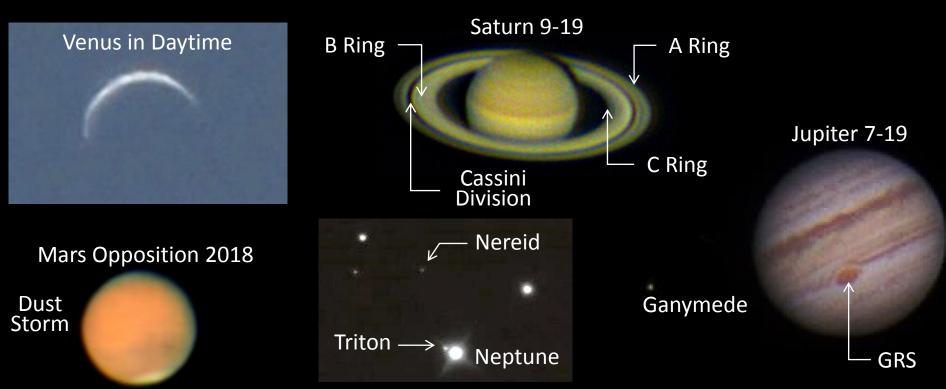
Moon Phases Before & After Full are better because the shadows bring out the details

Get Closer, look at the detail

> Now Go For a Close up, Target Along the Terminator

A Different But Interesting Moon

- > Imaging The Moon is relatively easy, short exposures
- > Some Special events to look for and image


Total Lunar Eclipse, or an ISS Transit

Planetary Imaging - Advanced

- > Imaging the Planets Requires more Magnification
- > The Planets are Much Smaller and Dimmer

Images of Jupiter & Saturn by George Grimm Image of Neptune by Sean McDonald

Planetary Imaging Camera Choice

- ➤ Imaging Planets with a DSLR is a bit harder than it seems. The planets are small and dim, you need more power and almost perfect seeing
- > So the digital CMOS dedicated planetary cameras are your Best Option. But now you need your laptop to power and operate these cameras and software
- > And you still need more equipment.....

How About The Sun?

- > NEVER EVER LOOK AT THE SUN THRU A TELESCOPE UNLESS YOU HAVE A PROPER SOLAR FILTER!!!
- ➤ Either Glass or Film They Both Block 99% of the Heat and Light. YES You Can Look at and Image The Sun Safely!!! Any Questions Please Contact LGDSO!

Our Sun in White Light

> NEVER EVER LOOK AT THE SUN THRU A TELESCOPE!

These images were taken thru a refractor with a white light solar filter

Total Eclipse of The Sun 2017

Regulus a Double Star in Leo

Total Solar Eclipse The Diamond Ring

Mercury Transit of The Sun 11-11-19

This image of third contact was taken thru a refractor with a 0.2 angstrom Hydrogen alpha solar filter

Advanced Deepsky Imaging Are You Ready To Get Down With The Sickness

Clear Skies

A pdf copy of this presentation is available on the LGDSO web site

Links

Imaging Support

- https://astrobackyard.com/7-astrophotography-tips/
- http://www.astropix.com/html/i_astrop/quick.html
- https://www.skyatnightmagazine.com/astrophotography/a-beginners-guide-to-astrophotography/
- https://www.skyandtelescope.com/astronomy-blogs/imaging-foundations-richard-wright/choose-iso-astrophotography/
- https://www.skyandtelescope.com/astronomy-resources/astrophotographytips/astrophotography-stacking-signal/
- https://www.skyandtelescope.com/astronomy-blogs/imaging-foundations-richard-wright/astrophotography-gentle-introduction-noise/
- https://www.skyandtelescope.com/astronomy-blogs/imaging-foundations-richard-wright/astrophotography-understanding-iso/
- https://m.youtube.com/channel/UCn3npsPixgoi_xLdCg9J-LQ

Links

Good Information

- http://lgdso.com/index.html
- http://www.cleardarksky.com/c/HRHObFLkey.html?1
- https://www.spaceweather.com
- https://apod.nasa.gov/apod/archivepix.html
- http://www.skymaps.com/downloads.html
- http://deepskystacker.free.fr/english/index.html
- https://sites.google.com/site/sequatorglobal/
- http://xjubier.free.fr/en/site_pages/solar_eclipses/TSE_2024_GoogleMapFull.html

Links

Vendors

- https://www.highpointscientific.com
- https://www.telescope.com/mobile/home.jsp
- https://www.meade.com/
- https://www.skywatcherusa.com
- https://www.celestron.com/portal/
- https://www.cloudynights.com